
Beacons: Selbstprogrammierbar mit ESP32, HM10-Modul oder Calliope
„Beacon“ kann mit „Signalfeuer“ oder
„Funkboje“ übersetzt werden. Ein Beacon
auf Bluetooth-Basis sendet immer wieder ein
Funksignal mit Information aus. Diese
erlauben es, ein Beacon mit einer
Smartphone-App zu orten. Damit eignen
Beacons sich als „Schlüsselfinder“. BLE als
besonders energiesparende Bluetooth-
Version erlaubt es, Beacons zu bauen, die
mit einer Knopfzelle viele Monate funken.
Wer in die BLE-Programmierung einsteigen
will, sollte mit der Welt rund um Arduino
und Co. Einigermaßen vertraut sein. Die
Arduino-Entwicklungsumgebung ist gut
geeignet, die entsprechende Hardware zu
programmieren. Es werden allerdings keine
Arduinos programmiert. Stattdessen
kommen z.B. ESP32- oder HM10-Module

zum Einsatz. Mit diesen beiden Varianten und zum Schluss mit dem
Calliope beschäftigt sich dieser Text. Bei der Verwendung des ESP32-
Boards habe ich mich eng an die Vorschläge von Herrn Pandit
gehalten, die ich am 23.05.2023 auf
https://circuitdigest.com/microcontroller-projects/esp32-based-bluetooth-

ibeacon gefunden habe. Allerdings verwende ich nicht den von ihm vorgeschlagene „nRF Connect“-App, sondern
den BLE-Scanner von „Bluepixel Technologies“.
Den von Pandit vorgeschlagenen ESP32-Code habe ich an zwei Stellen verändert: Als Name des habe ich
„Gerds ESP32 als iBeacon“eingetragen und bei „#define GPIO_DEEP_SLEEP_DURATION“ den Wert 1 (anstatt 10)

gesetzt. #include "sys/time.h"
#include "BLEDevice.h"
#include "BLEUtils.h"
#include "BLEServer.h"
#include "BLEBeacon.h"
#include "esp_sleep.h"
#define GPIO_DEEP_SLEEP_DURATION 1 // sleep x seconds and then wake up
RTC_DATA_ATTR static time_t last; // remember last boot in RTC Memory
RTC_DATA_ATTR static uint32_t bootcount; // remember number of boots in RTC Memory
// See the following for generating UUIDs:
// https://www.uuidgenerator.net/
BLEAdvertising *pAdvertising; // BLE Advertisement type
struct timeval now;
#define BEACON_UUID "87b99b2c-90fd-11e9-bc42-526af7764f64"
// UUID 1 128-Bit (may use linux tool uuidgen or random numbers via https://www.uuidgenerator.net/)
void setBeacon() {
 BLEBeacon oBeacon = BLEBeacon();
 oBeacon.setManufacturerId(0x4C00); // fake Apple 0x004C LSB (ENDIAN_CHANGE_U16!)
 oBeacon.setProximityUUID(BLEUUID(BEACON_UUID));
 oBeacon.setMajor((bootcount & 0xFFFF0000) >> 16);
 oBeacon.setMinor(bootcount & 0xFFFF);
 BLEAdvertisementData oAdvertisementData = BLEAdvertisementData();
 BLEAdvertisementData oScanResponseData = BLEAdvertisementData();
 oAdvertisementData.setFlags(0x04); // BR_EDR_NOT_SUPPORTED 0x04
 std::string strServiceData = "";
 strServiceData += (char)26; // Len
 strServiceData += (char)0xFF; // Type
 strServiceData += oBeacon.getData();
 oAdvertisementData.addData(strServiceData);
 pAdvertising->setAdvertisementData(oAdvertisementData);
 pAdvertising->setScanResponseData(oScanResponseData);
}
void setup() {
 Serial.begin(115200);
 gettimeofday(&now, NULL);
 Serial.printf("start ESP32 %d\n", bootcount++);
 Serial.printf("deep sleep (%lds since last reset, %lds since last boot)\n", now.tv_sec, now.tv_sec - last);
 last = now.tv_sec;
 // Create the BLE Device
 BLEDevice::init("Gerds ESP32 als iBeacon");
 // Create the BLE Server
 BLEServer *pServer = BLEDevice::createServer();
// <-- no longer required to instantiate BLEServer, less flash and ram usage
 pAdvertising = BLEDevice::getAdvertising();
 BLEDevice::startAdvertising();
 setBeacon();
 // Start advertising
 pAdvertising->start();
 Serial.println("Advertizing started...");
 delay(100);
 pAdvertising->stop();
 Serial.printf("enter deep sleep\n");
 esp_deep_sleep(1000000LL * GPIO_DEEP_SLEEP_DURATION);
 Serial.printf("in deep sleep\n");
}
void loop() {}

Das Beacon mit dem
angepassten Namen wurde
gefunden …

… und wird als Ge auf dem
„Radarschirm“ angezeigt,
allerdings in anderer Farbe.

Der Code – im PDF
auch kopierbar

https://circuitdigest.com/microcontroller-projects/esp32-based-bluetooth-ibeacon
https://circuitdigest.com/microcontroller-projects/esp32-based-bluetooth-ibeacon

Wenig tatsächlichen Aufwand, aber eine Menge Übung mit dem Material dürfte folgende Version erfordern, die
z.B. mit dem 23. Mai 2023 auf der Seite von Funduino angebotenen Bauteil gelingen sollte. Von uns wurde sie
bisher allerdings noch nicht im Detail ausprobiert:

Dieses Bauteil muss über einen sogenannten USB-TTL-Konverter (Schnittstellenwandler) an einen Rechner mit
Arduino-Entwicklungsumgebung angeschlossen werden, so wie z.B. auf dem Bild unten links aus dem Video
https://www.youtube.com/watch?v=ez3491-v8Og gezeigt wird.
Der rote Konverter ist über USB an den Rechner angeschlossen. In der Arduino-Enwicklungsumgebung muss der
passende Port eingestellt werden, im Beispiel war es COM8. Als Übertragungsmodus muss immer „Sowohl NL als
auch CR“ und als Geschwindigkeit 9600 Baud gewählt werden. Mit dem Senden des Befehl „AT+NAME=Gerd123“
wurde im Beispiel der Name des Beacons in „Gerd345“ umgewandelt und kann so vom Scanner erkannt und
geortet werden.
(Die Abfolge der Meldugen im unteren Monitorfenster – siehe Bildfolge rechts - ist etwas gewöhnungsbedürftig. Die neuesten Medungen werden unten
angesetzt. Und dass eine Umbenennung erfolgreich war, wird nicht mir der Meldung des neuen Namens quittiert. Dieser muss extra abgefragt werden.)

Calliopes sind teuerer als ESP32 oder HM10-Module, sind aber an vielen Schulen verfügbar und erlauben
ebenfalls ein Kennenlernen der Beacon-Welt. Allerdings sind muss dazu eine Erweiterung von
https://amerlander.github.io/pxt-bluetooth-beacons/ geladen werden, hier der QR-Code:
Sobald der Calliope entsprechend programmiert ist, wird er als Beacon im BLE-Scanner
angezeigt und ermöglicht direkt aus ihm heraus die eingetragene Seite zu öffnen.

Hier steht der aktuelle
Name. Das 3. OK zeigt an,
dass der Befehl richtig
verarbeitet werden konnte.

„ALT+NAME“ fragt den aktuellen
Namen ab.

Das 2. OK bestätigt den Erhalt des
Befehls „ALT+NAME=Gerd345.

Dieser Befehlt wird mit dem
„Senden“-Button zum Beacon
geschickt.

Dieser Eintrag und das 1. OK stammen
von einer vorherigen Abfrage.

https://amerlander.github.io/pxt-bluetooth-beacons/
https://www.youtube.com/watch?v=ez3491-v8Og%20

