
Ein Arduino-Projekt für das Gruselkabinett oder Halloween
Da steht ein bunter Ding auf dem Tisch mit einem Gesicht und der Aufschrift: „Schau mir

in die Augen!“ Du gehst näher dran , ein rotes Licht geht an und je dichter du dem Gesicht

kommst, desto tiefer wird der Ton. Das könntest du als Halloween-Gag nutzen …

Wir kümmern uns hier um das Innenleben: Ein Arduino-Board, ein Ultraschall-

Entfernungssensor eine LED mit Widerstand, ein kleiner Lautsprecher. Das ist alles für

knapp zehn Euro erhältlich. Außerdem brauchst du einen Computer, auf dem die Arduino-

Entwicklungsumgebung installiert ist. Und du musst wissen, wie man damit arbeitet. Es

gibt im Netz viele Anleitungen dazu.

I. Der Abstandssensor

Zuerst bringen wir den Abstandssensor „HC-SR04“ am Arduino zum Laufen. (Eigentlich sollte man

„Abstandssensor –Modul“ reden, weil es sich um eine komplette komplizierte Schaltung handelt.) Die beiden

scheinbaren „Augen“ des Moduls sind in Wirklichkeit ein Ultraschall-Lautsprecher und ein Mikrofon. Der

Lautsprecher sendet kurze Ultraschallsignale aus, Gegenstände reflektieren diesen Schall, das Mikrofon fängt das

Echo auf. Der Arduino berechnet dann mit dem Programm, das wir gleich sehen werden, aus dem Zeitunterschied

zwischen Trigger-Output und „pulse_In“-Input und der Schallgeschwindigkeit den Abstand. Das Ergebnis teilt er

uns über den seriellen Monitor mit, der ein Teil der Arduino-Entwicklungsumgebung ist.

II. Das Dimmen des roten Lichts

Die digitalen Pins 3, 5, 6, 9, 10 und 11 erlauben es,

eine LED zu dimmen. Der Trick: Die LED wird an

diesen digitalen Pins, die nur 5 Volt tatsächlich nur

ein- und ausschalten können, so zu takten, dass sie

dem Augen mehr oder weniger hell erscheinen. Das

geht in den Stufen von 0 bis 255, siehe den Sketch

„ArduinoLedNurDimmen“. Für die endgültige

„Gruselprogrammierung“ werden wir die Helligkeit

über die Entfernung steuern, die vom

Ultraschallsensor gemessen wird. In beiden Fällen

wird der Plusanschluss der Led über einen 150-Ohm-

Widerstand an Pin 11 angeschlossen und er

Minusanschluss der LED an GND. Rechts die Schaltung

und der Sketch zum Dimmen einer roten LED.

Der trigger-Pin, hier

Arduino-Pin 7, bringt

das Signal zum

Sensor-Modul.

Das echo-Signal wird

als Puls mit dem

„pulsIn“ -Befehl an

Pin 6 des Arduinos

erfasst.

Zeitangaben werden

beim Arduino als

Millisekunden

gemacht: „delay(5)“

bedeutet eine Pause

von 5 Millisekunden.

Der Trigger-Pin wird

also zunächst mit

„LOW“ auf 0 Volt

gesetzt, bleibt 5

Millisekunden so,

dann wird er 10

Millisekunden mit

„HIGH“ auf 5 Volt

gesetzt.

Oben siehst du, wie der Abstandssensor (Modell HC-SR04) an den

Arduino angeschlossen werden muss, rechts den Sketch (das

Programm), das über die Arduino-Entwicklungsumgebung

hochgeladen werden muss.

Die Zeile „abstand = (dauer/2) * 0.034;“ dient der Berechnung des

Abstands : Die Dauer zwischen dem Aussenden des Trigger-Signals

und dem Erfassen („pulseIn“) des Echos wird mit dem Wert für die

Schallgeschwindigkeit (in cm pro Sekunde) multipliziert.

Das gelbe Kabel führt von Pin 7 zu „Trig“ am

HC-SR04-Sensor und das grüne von Pin 6 zu „Echo“.

„VCC“ ist an einem 5-Volt-Pin angeschlossen (rot),

„Gnd“ an einem GND-Pin (blau).

III. Sound

Nun fehlen noch die Töne: Mit dem „tone“-Befehl können über einen digitalen Pin Frequenzen für einen

Lautsprecher bereitgestellt werden. Im einfachsten Fall kann das so aussehen:

IV. Die gesamte „Gruselschaltung“
Abstand, Licht, Sound – die drei Zutaten sind vorbereitet. Nun geht es an eine

wirkungsvolle Kombination. Hier wird ein Vorschlag gemacht, den du für deine Zwecke

abwandeln und verbessern kannst.

Über den digitalen Pin 8 werden - gesteuert durch den Sketch „ArduinoNurSound“ - Frequenzen von 50 bis

4000 Hertz an den einen Anschluss des Lautsprecher gegeben. Ein 150-Ohm-Widerstand in der Zuleitung begrenzt

die Stromstärke und stellt die Lautstärke ein. Der zweite Anschluss des Lautsprechers wird an einen GND-Pin

angeschlossen. Zur Soundausgabe kann auch ein passiver Piezo-Lautsprecher („Buzzer“)gewählt werden.

150-Ohm-Widerstand

Lautsprecher 8 Ohm,

0,2 Watt

Code der verwendeten Sketche:

ArduinoUltraSchall:
int trigger=7;
int echo=6;
long dauer=0;
long abstand=0;
void setup(){
Serial.begin (9600);
pinMode(trigger, OUTPUT);
pinMode(echo, INPUT);
}
void loop(){
digitalWrite(trigger, LOW);
delay(5);
digitalWrite(trigger, HIGH);
delay(10);
digitalWrite(trigger, LOW);
dauer = pulseIn(echo, HIGH);
abstand = (dauer/2) * 0.03432;
Serial.println("Abstand:");
delay(500);
}

ArduinoNurLedDimmen:
int ledPin = 11;
int helligkeit =0;
void setup(){
}
void loop(){
 for (int i=0; i <= 255; i++){
 analogWrite(ledPin, i);
 delay(10);
 }
}

ArduinoNurSound:
int soundPin = 8;
int frequenz=0;
void setup(){
}
void loop(){
 for (int i=1; i <= 50; i++){
 frequenz=i*80;
 tone(soundPin,frequenz);delay(100);
 noTone(soundPin);
 }
}

ArduinoGrusel.ino:
int ledPin = 11;
int soundPin = 8;
int trigger=7;
int echo=6;
long dauer=0;
long abstand=0;
int helligkeit =0;
int frequenz=0;
void setup(){
Serial.begin (9600);
pinMode(trigger, OUTPUT);
pinMode(echo, INPUT);
}
void loop(){
digitalWrite(trigger, LOW);
delay(5);
digitalWrite(trigger, HIGH);
delay(10);
digitalWrite(trigger, LOW);
dauer = pulseIn(echo, HIGH);
abstand = (dauer/2)*0.034;
 if (abstand >= 100 || abstand <= 0)
 {Serial.println("Keine Aktion!");delay(500);}
 else
 {Serial.print("Abstand: ");Serial.print(abstand);Serial.println(" cm");
 helligkeit = int(abstand*2.55);
 Serial.print("Helligkeit: ");Serial.println(helligkeit);
 analogWrite(ledPin,helligkeit);delay(800);
 frequenz = abstand*40;
 Serial.print("Frequenz: ");Serial.println(frequenz);
 tone(soundPin,frequenz);delay(200);
 noTone(soundPin);}
 }

